The Quantum Mechanics of Being and Its Manifestation

My article “The Quantum Mechanics of Being and Its Manifestation” has been published at Cosmology.com (Volume 24, April 2nd, 2016). Here is the link to the article, and here is the abstract:

How can quantum mechanics be (i) the fundamental theoretical framework of contemporary physics and (ii) a probability calculus that presupposes the events to which, and on the basis of which, it assigns probabilities? The question is answered without invoking knowledge or observers, by interpreting the necessary distinction between two kinds of physical quantities – unconditionally definite quantities and quantities that have values only if they are measured – as a distinction between the manifested world and its manifestation.

There also is an extended version containing an Appendix which the published version lacks. While the published paper touches on various ways in which quantum mechanics does not have to do with consciousness, this Appendix concerns what quantum mechanics has to do with consciousness. The extended version is available here.

Quantum mechanics in a new light

My paper “Quantum mechanics in a new light” has been published online in Foundations of Science (DOI 10.1007/s10699-016-9487-6 ). The final publication is available from Springer. The manuscript can be downloaded here.

Abstract: Although the present paper looks upon the formal apparatus of quantum mechanics as a calculus of correlations, it goes beyond a purely operationalist interpretation. Having established the consistency of the correlations with the existence of their correlata (measurement outcomes), and having justified the distinction between a domain in which outcome-indicating events occur and a domain whose properties only exist if their existence is indicated by such events, it explains the difference between the two domains as essentially the difference between the manifested world and its manifestation. A single, intrinsically undifferentiated Being manifests the macroworld by entering into reflexive spatial relations. This atemporal process implies a new kind of causality and sheds new light on the mysterious nonlocality of quantum mechanics. Unlike other realist interpretations, which proceed from an evolving-states formulation, the present interpretation proceeds from Feynman’s formulation of the theory, and it introduces a new interpretive principle, replacing the collapse postulate and the eigenvalue–eigenstate link of evolving-states formulations. Applied to alternatives involving distinctions between regions of space, this principle implies that the spatiotemporal differentiation of the physical world is incomplete. Applied to alternatives involving distinctions between things, it warrants the claim that, intrinsically, all fundamental particles are identical in the strong sense of numerical identical. They are the aforementioned intrinsically undifferentiated Being, which manifests the macroworld by entering into reflexive spatial relations.

Quantum mechanics and the manifestation of the world

My paper “Quantum mechanics and the manifestation of the world” has been published in Quantum Studies: Mathematics and Foundations 1 (3–4), pages 195–202, DOI 10.1007/s40509-014-0017-3. You can download it from Springer (for free) via this link.

An interesting new journal. In the preface to the second issue of Quantum Studies: Mathematics and Foundations the editors wrote:

After a very successful recent launch of this journal with the first issue, we continue to hope that this journal provides a home for those who think there are new worlds to be discovered by looking deeply into quantum mechanics. Our advice is: “Think, reconsider, explore, create deep questions, use paradoxes as a tool for understanding, and finally: publish in this journal!”

The reviewer of my paper wrote that it “describes a unique and refreshingly different view of quantum theory” — something one doesn’t get to hear very often. The paper is based on an invited talk at the Berge Fest, a conference celebrating the 60th birthday of Berge Englert (Centre for Quantum Technologies, National University of Singapore, 22–25 April 2014).

Conference venue
The Ngee Ann Kongsi Auditorium at the National University of Singapore, where the conference was held.

The talk in turn was based on my paper “Manifesting the Quantum World”, which was published in Foundations of Physics 44 (6), 641–677, DOI 10.1007/s10701-014-9803-3. You can get the preprint here.

Quantum physics meets the philosophy of mind

Book cover

Today I received my copy of the proceedings of this international conference, which was held at the Catholic University of Milan in June 2013. It contains my paper “Consciousness in the quantum world: An Indian perspective”.

Download a pre-print of the paper.

Download the book flyer.

At the European Congress of the Theosophical Society in Paris

TS-Paris
Participants at the 37th European Congress of the Theosophical Society
talk1
Quantum physics: a tale of two world views — click to watch or download
talk2
Evolution of Consciousness: an Indian Perspective — click to watch or download

You can also download the PDFs: First Second

Notes on an Important Book — Another 5-Star Review

Posted by Pete J at Amazon.com on (remember remember) the 5th of November:

For anyone interested in how mysticism can be connected up with physics in a practical way, to the benefit of physics, and without any beating around the bush, this book may be a godsend.

The mathematics of quantum mechanics is well beyond the comprehension of most people and for the most part it goes straight over my head. This text book, which seems to be a thorough introduction to this mathematics, complete with challenging exercises, is therefore unlikely to become a popular best-seller. It is also expensive, having the worst word-to-price ratio of any book I’ve ever bought. However, I’m glad I bought it. It is possible even for the non-mathematician to see at least how the various mathematical approaches fit together and why they are needed, while the real heart of the book is the interpretation it places on the mathematics and this is explained economically and in plain English.

Quantum theory is astonishingly successful despite the utter lunacy of its mathematics, but it rules out any hope of our ever being able to conceive of what it describes by the use of everyday ‘classical’ concepts. We don’t have any other kind of concepts, so we cannot conceive of what it describes. Whatever it describes would have to be vastly more weird and wonderful than anything we observe in our everyday world. So what are we to do? Must we accept that the way have to describe Nature must always remain incomprehensible to us?

While explaining why interpretations of quantum mechanics that try to accommodate classical intuitions are impossible, rendering futile any hope of creating a picture in our heads of what lies behind the mathematics, Mohrhoff quotes Dennis Diecks, Professor of the Foundations and Philosophy of the Natural Sciences at Utrecht University.

“However, this is a negative result that only provides a starting-point for what really has to be done: something conceptually new has to be found, different from what we are familiar with. It is clear that this constructive task is a particularly difficult one, in which huge barriers (partly of a psychological nature) have to be overcome.”

Mohrhoff continues, ‘Something conceptually new has been found, and it is presented in this book.’ What is presented is a big idea. ‘What quantum mechanics is trying to tell us’, says Mohrhoff, ‘is that reality is structured from the top down.’ As something to think about this is probably worth the price of the book. It seems possible that as stated this is a one-sided view and that there are two equal and opposite ways of looking at this structure, as might seem more typical for the world-view of the Upanishads, but it hardly matters. What matters is that we can see from The World According to Quantum Mechanics that the ancient psychological, metaphysical and cosmological doctrine endorsed by Sri Aurobindo and his group would dove-tail perfectly with the mathematics of quantum mechanics and allow physics to be reconciled with metaphysics and mysticism.

The book is a vindication of Erwin Schrodinger, who concluded early on that the new physics he was helping to invent implied the truth of the advaita doctrine. With its publication it may not be unreasonable to think that for theoretical physics a paradigm shift may be approaching of even greater magnitude than quantum mechanics.

Well said

From the introduction of Mind and Cosmos, the new book by philosopher Thomas Nagel (“What is it like to be a bat?”):

One of the legitimate tasks of philosophy is to investigate the limits of even the best developed and most successful forms of contemporary scientific knowledge. It may be frustrating to acknowledge, but we are simply at the point in the history of human thought at which we find ourselves, and our successors will make discoveries and develop forms of understanding of which we have not dreamt. Humans are addicted to the hope for a final reckoning, but intellectual humility requires that we resist the temptation to assume that tools of the kind we now have are in principle sufficient to understand the universe as a whole. Pointing out their limits is a philosophical task, whoever engages in it, rather than part of the internal pursuit of science—though we can hope that if the limits are recognized, that may eventually lead to the discovery of new forms of scientific understanding. Scientists are well aware of how much they don’t know, but this is a different kind of problem—not just of acknowledging the limits of what is actually understood but of trying to recognize what can and cannot in principle be understood by certain existing methods.

The last particle ever?

Cosmologist and science blogger Ethan Siegel has a fascinating article titled Have we reached the end of Particle Physics? I think this is as important as he thinks it is. Here is the gist of it:

there is a new idea gaining traction in recent years when it comes to making a quantum theory of gravity: asymptotic safety. Without going into any mathematical detail (and with full disclosure that I myself don’t understand it as well as I’d like), you can think of it as a mathematical trick that allows you to incorporate gravitation into your QFT….

There’s a very important reason we care about this: if we understand how to incorporate gravity into our quantum field theories, and we’ve measured the masses of all the standard model particles except one, we can theoretically predict what the mass of that one remaining particle needs to be in order for physics to work properly at all energies!

We can do this because demanding that the Universe be stable constrains that last free parameter — the mass of the Higgs boson — to be one particular value. If the mass turns out to be that value, then that’s indicative that, if asymptotic safety is a valid idea, there are no new particles in the Universe that couple to the Standard Model. In other words, there are no new particles to be found by building colliders in the Universe, all the way up to Planck energies, some 15 orders of magnitude more energetic than those probed by the LHC.

But if we can predict that mass, and the actual mass of the Higgs boson turns out to be anything else, either higher or lower, then that means there must be something new in the Universe in order for physics to be self-consistent. Now, here’s the truly amazing thing: that mass was calculated back in 2009, before the LHC was turned on.

You can read the abstract here and the full article here, but what’s truly amazing is that we’ve now found the Higgs, and we know its mass. Want to see what this paper, nearly 3 years old now, predicted for the mass of the Higgs?

holy crap

Holy. Crap.

So I want you to understand this correctly, because this could be huge. If asymptotic safety is right, and the work done in this paper is right, then an observation of a Higgs Boson with a mass of 126 GeV, with a very small uncertainty (±1 or 2 GeV), would be damning evidence against supersymmetry, extra dimensions, technicolor, or any other theory that incorporates any new particles that could be found by any accelerator that could be built within our Solar System.

Fast-forward to this past July, when the discovery of the Higgs Boson — confirmed to be a single, fundamental scalar particle of spin-0 — was announced. What was its mass, again?

According to the combined ATLAS+CMS data (both major detectors), a Higgs of mass somewhere between 125 and 126 GeV was detected with a (robust) significance of 6-σ, with an uncertainty of around ±1 GeV. In other words, those of you who followed the excitement in July may have witnessed the last fundamental particle physics discovery we will ever make.

No need to make the world stranger than it is

Another review at Amazon.com, by Adrian Icazuriaga:

For those who have been following Mohrhoff’s revealing ideas during the last decade (the so called “Pondicherry Interpretation of Quantum Mechanics”), this book adds a few very important points to what is already one of the most comprehensive and consistent interpretations of the fundamental laws of physics that anyone has put forward up to the present date.

He obviously didn’t start this journey one fortunate Monday morning. He is following the steps of people like Bohr, Peres, Mermin and many other physicists who have contributed greatly to one and the same philosophical project: the de-reification of quantum-mechanical correlation laws, and the enormous implications that this carries for our understanding of physical reality.

This book is probably the best synthesis of that long-standing project. Its merit not only lies in taking a few isolated ideas about QM’s probability algorithms and integrate them into an overall consistent view, which would be a huge achievement in itself, but first and foremost, to explain classical mechanics and classical conservation laws as part of (in the limit of) that same fuzzy state of affairs.

In this way, he very cleverly differentiates between what an equation of continuity says and what a local conservation law is, basically “a feature of our calculational tools”. Key concepts like energy and momentum are introduced as underpinning the homogeneity of time and space respectively, instead of being just symbols in an abstract equation. On the other hand, the deceptive idea of force, deeply entrenched in our perception of a physical world, is redefined in a way that permits us to make sense of the Lorentz force law and the gravitational force as not being a mediating agent between causes and effects.

This is a profound, exhaustive and very well organized textbook, which should be of interest to anyone with a previous background in physics or, even better, to anyone who has not yet been contaminated by the mainstream habits and tricks of philosophy of science and crash undergraduate courses in QM. You won’t find here any of the fancy stuff that philosophers like to talk about (backwards causation, many minds, many worlds and many papers), but it will give you enough substance and plenty of material to think about for the next ten or twenty years. At the very least, it will give you the basic tools to approach any other interpretational strategy with the necessary dose of scepticism and awareness. As the author correctly stresses, there is “no need to make the world stranger than it is”.

The style is not as incisive and confrontational as most of Mohrhoff’s shorter works, which is a bit of a disappointment, but understandable giving that this book is aimed at the general public. In years to come, “The World According to Quantum Mechanics” will be taken for what it is: a serious and courageous challenge to our fundamental ideas about the fabric of space and matter.